Improving performance in colorectal cancer histology decomposition using deep and ensemble machine learning
Publiceringsår
2024
Upphovspersoner
Prezja, Fabi; Annala, Leevi; Kiiskinen, Sampsa; Lahtinen, Suvi; Ojala, Timo; Ruusuvuori, Pekka; Kuopio, Teijo
Abstrakt
In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task.We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
Visa merOrganisationer och upphovspersoner
Åbo universitet
Ruusuvuori Pekka
Helsingfors universitet
Annala Leevi
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Publiceringsavgift för öppen tillgång €
1640
Betalningsår för den öppen tillgång publiceringsavgiften
2025
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Cancersjukdomar
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Förenade kungariket
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.heliyon.2024.e37561
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja