undefined

Improving performance in colorectal cancer histology decomposition using deep and ensemble machine learning

Publiceringsår

2024

Upphovspersoner

Prezja, Fabi; Annala, Leevi; Kiiskinen, Sampsa; Lahtinen, Suvi; Ojala, Timo; Ruusuvuori, Pekka; Kuopio, Teijo

Abstrakt

In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task.We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
Visa mer

Organisationer och upphovspersoner

Åbo universitet

Ruusuvuori Pekka

Jyväskylä universitet

Prezja Fabi

Kiiskinen Sampsa

Kuopio Teijo Orcid -palvelun logo

Ojala Timo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal

Heliyon

Moderpublikationens namn

Heliyon

Förläggare

Elsevier

Volym

10

Nummer

18

Artikelnummer

e37561

Publikationsforum

84134

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Publiceringsavgift för öppen tillgång €

1640

Betalningsår för den öppen tillgång publiceringsavgiften

2025

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Cancersjukdomar

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.heliyon.2024.e37561

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja