undefined

Signal dimension estimation in BSS models with serial dependence

Publiceringsår

2022

Upphovspersoner

Nordhausen, Klaus; Taskinen, Sara; Virta, Joni

Abstrakt

Many modern multivariate time series datasets contain a large amount of noise, and the first step of the data analysis is to separate the noise channels from the signals of interest. A crucial part of this dimension reduction is determining the number of signals. In this paper we approach this problem by considering a noisy latent variable time series model which comprises many popular blind source separation models. We propose a general framework for the estimation of the signal dimension that is based on testing for sub-sphericity and give examples of different tests suitable for time series settings. In the inference we rely on bootstrap null distributions. Several simulation studies are used to demonstrate the performances of the tests in different time series settings.
Visa mer

Organisationer och upphovspersoner

Åbo universitet

Virta Joni

Jyväskylä universitet

Nordhausen Klaus Orcid -palvelun logo

Taskinen Sara Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Statistik; Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1109/ICECCME55909.2022.9988152

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja