undefined

Self-Supervised Low-Light Hyperspectral Image Enhancement via Fourier-Based Transformer Network

Publiceringsår

2025

Upphovspersoner

Demirhan, Mahmut Esat; Yuksel, Seniha Esen; Erdem, Erkut; Erdem, Aykut; Raita-Hakola, Anna-Maria; Pölönen, Ilkka

Abstrakt

Low-light hyperspectral images (HSIs) suffer from reduced visibility, amplified noise, and distorted spectral signatures, which degrade critical downstream tasks in surveillance, environmental monitoring, and remote sensing. Because collecting paired normal/low-light HSIs is often impractical, we introduce SS-HSLIE, the first self-supervised framework for low-light HSI enhancement. Guided by Retinex theory, our cascaded network (i) decomposes an input HSI into reflectance and illumination maps and (ii) refines the illumination with a Transformer module that models global spatial context. Two physics-aware losses further steer learning: a Fourier spectrum loss that removes noise while protecting high-frequency details, and a spectral smoothness loss that preserves inter-band consistency. Trained solely on unpaired low-light data, SS-HSLIE substantially outperforms recent unsupervised baselines on both an indoor benchmark and a challenging new real-world outdoor dataset, delivering brighter, cleaner HSIs while faithfully preserving material-specific spectra. Code, pretrained models, and our new outdoor HSI dataset will be released.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Raita-Hakola Anna-Maria Orcid -palvelun logo

Pölönen Ilkka Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

Early online

Publikationsforum

57458

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/JSTSP.2025.3632537

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja