undefined

Energy-Efficient Resource Management for Mobile Edge Computing-Enabled Roadside Units in Multi-Vehicle Networks

Publiceringsår

2025

Upphovspersoner

Wang, Zhongyu; Shi, Jihang; Cao, Yashuai; Chang, Zheng; Lv, Tiejun; Ni, Wei

Abstrakt

With the advancement of vehicular networking technology, communication between vehicles, and between vehicles and cloudlets, is becoming increasingly frequent, leading to a growing demand for computing resources. This growing demand necessitates more robust and efficient computing solutions to handling the data exchange and processing requirements. Mobile edge computing (MEC) addresses computing demands by leveraging edge resources. In practice, numerous parameter constraints, such as task volumes and available resources, render optimal resource management challenging. This paper presents a vehicular networking communication scenario involving an MEC-enabled roadside unit and multiple vehicles. We propose a new method that jointly optimizes task offloading decisions along with power and bandwidth allocation, aiming to minimize system energy consumption. Given the non-convexity of the original problem, characterized by the complexity and interdependence of multiple optimization variables, we adopt a strategic approach to decouple it into two sub-problems. The problem can be solved using deep learning and subgradient methods separately. Finally, a refined solution can be obtained through iterative solving with the block coordinate descent (BCD) method. Simulations provide compelling evidence that our scheme significantly reduces system energy consumption, outperforming benchmarks and showcasing its superiority.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

Early online

Publikationsforum

57587

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/JIOT.2025.3588866

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja