undefined

A novel multi-stage multi-scenario multi-objective optimisation framework for adaptive robust decision-making under deep uncertainty

Publiceringsår

2026

Upphovspersoner

Shavazipour, Babooshka; Stewart, Theodor J.

Abstrakt

Besides, most decisions need to be made before having complete knowledge about all aspects of the problem, leaving some sort of uncertainty. Deep uncertainty happens when the degree of uncertainty is so high that the probability distributions are not confidently knowable. In this situation, using wrong probability distributions leads to failure. Scenarios, instead, should be used to evaluate the consequences of any decisions in different plausible futures and find a robust solution. In this study, we proposed a novel multi-stage multi-scenario multi-objective optimisation framework for adaptive/dynamic robust decision-making under deep uncertainty using a more flexible definition of robustness by incorporating the risk attitude of the decision-makers. In this definition, a robust decision is one that performs relatively well (acceptable) in a broad range of scenarios. Two approaches, named multi-stage multi-scenario multi-objective and two-stage moving horizon, have been proposed and compared. Finally, the proposed approaches are applied in a case study of sequential portfolio selection under deep uncertainty, and the robustness of their solutions is discussed.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Shavazipour Babooshka Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal

Omega

Förläggare

Elsevier

Volym

138

Artikelnummer

103405

Publikationsforum

64392

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.omega.2025.103405

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja