Approximation of BV functions by neural networks : A regularity theory approach
Publiceringsår
2025
Upphovspersoner
Avelin, Benny; Julin, Vesa
Abstrakt
In this paper, we are concerned with the approximation of functions by single hidden layer neural networks with ReLU activation functions on the unit circle. In particular, we are interested in the case when the number of data-points exceeds the number of nodes. We first study the convergence to equilibrium of the stochastic gradient flow associated with the cost function with a quadratic penalization. Specifically, we prove a Poincaré inequality for a penalized version of the cost function with explicit constants that are independent of the data and of the number of nodes. As our penalization biases the weights to be bounded, this leads us to study how well a network with bounded weights can approximate a given function of bounded variation (BV). Our main contribution concerning approximation of BV functions, is a result which we call the localization theorem. Specifically, it states that the expected error of the constrained problem, where the length of the weights are less than R, is of order R-1/9 with respect to the unconstrained problem (the global optimum). The proof is novel in this topic and is inspired by techniques from regularity theory of elliptic partial differential equations. Finally, we quantify the expected value of the global optimum by proving a quantitative version of the universal approximation theorem.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Förläggare
Volym
23
Nummer
7
Sidor
1129-1179
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Singapore
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1142/S0219530525500046
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja