undefined

Adaptive Generalized Mean and Social Distance Metric for Smart Manufacturing Tasks

Publiceringsår

2025

Upphovspersoner

Terziyan, Vagan; Vitko, Oleksandra

Abstrakt

This paper addresses a critical gap in the artificial intelligence (AI) and machine learning (ML) capabilities used in smart manufacturing by integrating an adaptive generalized mean function and a generalized social distance metric. Current AI/ML approaches often struggle with the dynamic, heterogeneous nature of manufacturing environments. Our proposed framework offers a flexible, context-aware solution for tasks such as clustering and data aggregation in the Industry 4.0 and 5.0 landscapes. Generalized mean functions offer flexibility in data aggregation, while the social distance metric provides new insights into data relationships, including factors like social asymmetry. We presented novel generalized mean function on the basis of Lehmer mean and enhanced by the sigmoid-logit pair. Such a mean can be controlled by two trainable parameters and has several useful properties for various ML and AI tasks. We presented also two options for the generalized social distance metric, each utilizing the suggested generalized mean function in different ways. The first one is based on social asymmetry of the neighborhoods in data distribution. The second one measures the distance between the centroids of corresponding social context areas. Our approach offers practical benefits for a variety of smart manufacturing tasks, effectively addressing the limitations of existing methods. Find presentation slides here: https://ai.it.jyu.fi/ISM-2024-MEAN-DISTANCE.pptx
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Solina, Vittorio; Longo, Francesco; Romero, David

Förläggare

Elsevier

Sidor

134-145

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2025.01.077

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja