Adaptive Generalized Mean and Social Distance Metric for Smart Manufacturing Tasks
Publiceringsår
2025
Upphovspersoner
Terziyan, Vagan; Vitko, Oleksandra
Abstrakt
This paper addresses a critical gap in the artificial intelligence (AI) and machine learning (ML) capabilities used in smart manufacturing by integrating an adaptive generalized mean function and a generalized social distance metric. Current AI/ML approaches often struggle with the dynamic, heterogeneous nature of manufacturing environments. Our proposed framework offers a flexible, context-aware solution for tasks such as clustering and data aggregation in the Industry 4.0 and 5.0 landscapes. Generalized mean functions offer flexibility in data aggregation, while the social distance metric provides new insights into data relationships, including factors like social asymmetry. We presented novel generalized mean function on the basis of Lehmer mean and enhanced by the sigmoid-logit pair. Such a mean can be controlled by two trainable parameters and has several useful properties for various ML and AI tasks. We presented also two options for the generalized social distance metric, each utilizing the suggested generalized mean function in different ways. The first one is based on social asymmetry of the neighborhoods in data distribution. The second one measures the distance between the centroids of corresponding social context areas. Our approach offers practical benefits for a variety of smart manufacturing tasks, effectively addressing the limitations of existing methods. Find presentation slides here: https://ai.it.jyu.fi/ISM-2024-MEAN-DISTANCE.pptx
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Journal
Moderpublikationens namn
6th International Conference on Industry 4.0 and Smart Manufacturing
Moderpublikationens redaktörer
Solina, Vittorio; Longo, Francesco; Romero, David
Förläggare
Sidor
134-145
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object]
Publiceringsland
Nederländerna
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.procs.2025.01.077
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja