undefined

Discover and Explore Weak Causality and Causal Disposition in Images for Smart Manufacturing Tasks

Publiceringsår

2025

Upphovspersoner

Streltsov, Oleksii; Terziyan, Vagan; Vitko, Oleksandra

Abstrakt

In the context of Industry 4.0 and smart manufacturing, effective machine learning models must not only predict outcomes but also understand the underlying causal relationships for tasks such as predictive and prescriptive maintenance. However, traditional Convolutional Neural Networks (CNNs) are often limited by their inability to explicitly capture and utilize these causal relationships within image data, which can lead to suboptimal performance and limited interpretability in industrial applications. This paper addresses these limitations by advancing our prior work on Causality-Aware Convolutional Neural Networks (CA-CNNs), which are designed to identify and utilize hidden causal factors within images. Through a series of empirical validations, we demonstrate that: CA-CNNs outperform conventional CNNs in classification tasks by employing causality maps; pre-trained CNNs enhance the computation of these maps, while weighting features based on causality maps leads to superior performance; the “Lehmer” method improves noise tolerance and adversarial robustness, and the use of “causality shadows” derived from saliency maps increases classification accuracy. We further explore integration strategies, including Knowledge-Informed Machine Learning schemas, to merge the discovered features effectively with their causal relationships. Our findings highlight the significant potential of CA-CNNs and their modifications in industrial applications, offering improved predictive capabilities, and explainability in smart manufacturing. See presentation slides: https://ai.it.jyu.fi/ISM-2024-CA-CNN-Experiments.pptx Find code and details on experiments: https://github.com/Alexiush/weak-causality-and-causal-disposition-in-images
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Solina, Vittorio; Longo, Francesco; Romero, David

Förläggare

Elsevier

Sidor

187-198

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2025.01.082

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja