undefined

A bridge between convexity and quasiconvexity

Publiceringsår

2025

Upphovspersoner

Blanc, Pablo; Parviainen, Mikko; Rossi, Julio D.

Abstrakt

We introduce a notion of convexity with respect to a one-dimensional operator and with this notion find a one-parameter family of different convexities that interpolates between classical convexity and quasiconvexity. We show that, for this interpolation family, the convex envelope of a continuous boundary datum in a strictly convex domain is continuous up to the boundary and is characterized as being the unique viscosity solution to the Dirichlet problem in the domain for a certain fully nonlinear partial differential equation that involves the associated operator. In addition we prove that the convex envelopes of a boundary datum constitute a one-parameter curve of functions that goes from the quasiconvex envelope to the convex envelope being continuous with respect to uniform convergence. Finally, we also show some regularity results for the convex envelopes proving that there is an analogous to a supporting hyperplane at every point and that convex envelopes are C1 if the boundary data satisfies in particular NV-condition we introduce.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Parviainen Mikko Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

De Gruyter

Volym

Early online

Publikationsforum

56327

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object]

Publiceringsland

Tyskland

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1515/forum-2024-0190

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja