Autonomous Agents in Software Development : A Vision Paper
Publiceringsår
2025
Upphovspersoner
Rasheed, Zeeshan; Waseem, Muhammad; Sami, Malik Abdul; Kemell, Kai-Kristian; Ahmad, Aakash; Duc, Anh Nguyen; Systä, Kari; Abrahamsson, Pekka
Abstrakt
Large Language Models (LLM) are reshaping the field of Software Engineering (SE). They enable innovative methods for executing many SE tasks, including automation of entire process of Software Development Life Cycle (SDLC). However, only a limited number of existing works have thoroughly explored the potential of LLM based AI agents to automate the entire lifecycle in SE. In this paper, we demonstrate the success of our initial efforts in automating the entire lifecycle autonomously based on given software specification as input, which has shown remarkable efficiency and significantly reduced development time. Our preliminary results suggest that the careful implementation of AI agents can enhance the development lifecycle. We aim to streamline the SDLC by integrating all phases into an AI-driven chat interface, enhancing efficiency and transparency. Furthermore, we seek to enhance collaboration, creating an environment where stakeholders from various backgrounds can contribute, review, and refine ideas and requirements in real-time. This forward-looking direction guarantees to redefine the paradigms of SE and also make software creation more inclusive, collaborative, and efficient.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
Förläggare
Sidor
15-23
ISSN
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/978-3-031-72781-8_2
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja