Predicting review helpfulness in video games: A comparative analysis of machine learning models and NLP integration
Publiceringsår
2024
Upphovspersoner
Olmedilla, Maria; Espinosa-Leal, Leonardo; Romero-Moreno, Jose Carlos; Li, Zhen
Abstrakt
This paper investigates the prediction of video game review helpfulness on the Steam platform using machine learning and natural language processing (NLP) techniques. We applied three models—XGBoost, Extreme Learning Machine (ELM), and Ridge regression—to predict helpfulness scores as both a regression and binary classification problem. XGBoost demonstrated the best performance, while ELM offered a computationally efficient alternative. Text features generated from DistilBERT were incorporated, but their inclusion did not significantly enhance model accuracy. Our findings suggest that non-textual features, such as review length, playtime, and helpful votes, are more influential in determining helpfulness. Early predictions of review helpfulness could benefit users by highlighting valuable feedback and aiding developers in refining their games. Future research will explore fine-tuning NLP models on larger datasets and incorporating additional features, such as sentiment analysis, to improve performance.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
22
Nummer
2
Sidor
1-15
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
El-, automations- och telekommunikationsteknik, elektronik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja