undefined

Predicting review helpfulness in video games: A comparative analysis of machine learning models and NLP integration

Publiceringsår

2024

Upphovspersoner

Olmedilla, Maria; Espinosa-Leal, Leonardo; Romero-Moreno, Jose Carlos; Li, Zhen

Abstrakt

This paper investigates the prediction of video game review helpfulness on the Steam platform using machine learning and natural language processing (NLP) techniques. We applied three models—XGBoost, Extreme Learning Machine (ELM), and Ridge regression—to predict helpfulness scores as both a regression and binary classification problem. XGBoost demonstrated the best performance, while ELM offered a computationally efficient alternative. Text features generated from DistilBERT were incorporated, but their inclusion did not significantly enhance model accuracy. Our findings suggest that non-textual features, such as review length, playtime, and helpful votes, are more influential in determining helpfulness. Early predictions of review helpfulness could benefit users by highlighting valuable feedback and aiding developers in refining their games. Future research will explore fine-tuning NLP models on larger datasets and incorporating additional features, such as sentiment analysis, to improve performance.
Visa mer

Organisationer och upphovspersoner

Yrkeshögskolan Arcada

Espinosa-Leal Leonardo Orcid -palvelun logo

Li Zhen

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

22

Nummer

2

Sidor

1-15

Publikationsforum

57320

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja