undefined

Game-Theoretic Power Allocation and Client Selection for Privacy-Preserving Federated Learning in IoMT

Publiceringsår

2025

Upphovspersoner

Liu, Jingyuan; Chang, Zheng; Ye, Chaoxiong; Mumtaz, Shahid; Hämäläinen, Timo

Abstrakt

In recent years, the Internet of Medical Things (IoMT) has significantly boosted the healthcare industry. Federated learning (FL) can enhance the utilization of patient data while protecting privacy. Despite the great potential of FL to enhance the architecture of IoMT, the need for effective interference management and the limited energy resources of IoMT devices make the integration of FL into IoMT environments particularly challenging. This study proposes an innovative framework to address these challenges by optimizing power allocation and client selection across participating IoMT devices in the FL process. By employing a Stackelberg game model, our approach orchestrates power allocation among IoMT devices to enhance communication efficiency while adhering to strict differential privacy (DP) standards. Regarding the availability of network state information, we propose non-uniform pricing and uniform pricing strategies, respectively. Then, we derive the optimal interference price and power for the IoMT devices using nonlinear programming and convex optimization. To tackle the issue of energy constraints in IoMT devices, we adopt Lyapunov optimization for adaptive client selection, ensuring sustainable device participation in the FL process over time. In addition, our approach integrates DP to protect patient data, carefully balancing between privacy and the accuracy of the learning model. Our extensive simulations demonstrate marked improvements in privacy preservation, communication efficiency, and energy management efficiency, highlighting the effectiveness of our proposed method over existing solutions.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Ye Chaoxiong Orcid -palvelun logo

Hämäläinen Timo Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/tcomm.2024.3523968

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja