Game-Theoretic Power Allocation and Client Selection for Privacy-Preserving Federated Learning in IoMT
Publiceringsår
2025
Upphovspersoner
Liu, Jingyuan; Chang, Zheng; Ye, Chaoxiong; Mumtaz, Shahid; Hämäläinen, Timo
Abstrakt
In recent years, the Internet of Medical Things (IoMT) has significantly boosted the healthcare industry. Federated learning (FL) can enhance the utilization of patient data while protecting privacy. Despite the great potential of FL to enhance the architecture of IoMT, the need for effective interference management and the limited energy resources of IoMT devices make the integration of FL into IoMT environments particularly challenging. This study proposes an innovative framework to address these challenges by optimizing power allocation and client selection across participating IoMT devices in the FL process. By employing a Stackelberg game model, our approach orchestrates power allocation among IoMT devices to enhance communication efficiency while adhering to strict differential privacy (DP) standards. Regarding the availability of network state information, we propose non-uniform pricing and uniform pricing strategies, respectively. Then, we derive the optimal interference price and power for the IoMT devices using nonlinear programming and convex optimization. To tackle the issue of energy constraints in IoMT devices, we adopt Lyapunov optimization for adaptive client selection, ensuring sustainable device participation in the FL process over time. In addition, our approach integrates DP to protect patient data, carefully balancing between privacy and the accuracy of the learning model. Our extensive simulations demonstrate marked improvements in privacy preservation, communication efficiency, and energy management efficiency, highlighting the effectiveness of our proposed method over existing solutions.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Volym
Early Access
ISSN
Publikationsforum
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/tcomm.2024.3523968
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja