Product formulas for multiple stochastic integrals associated with Lévy processes
Publiceringsår
2024
Upphovspersoner
Di Tella, Paolo; Geiss, Christel; Steinicke, Alexander
Abstrakt
In the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of martingales from a compensated-covariation stable family. This enables us to consider Lévy processes with both jump and Gaussian part. It is well known that for multiple integrals w.r.t. the Brownian motion such product formulas exist without further integrability conditions on the kernels. However, if a jump part is present, this is, in general, false. Therefore, we provide here sufficient conditions on the kernels which allow us to establish product formulas. As an application, we obtain explicit expressions for the expectation of products of iterated integrals, as well as for the moments and the cumulants for stochastic integrals w.r.t. the random measure. Based on these expressions, we show a central limit theorem for the long time behaviour of a class of stochastic integrals. Finally, we provide methods to calculate the number of summands in the product formula.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Geiss Christel
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
Early online
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object]
Publiceringsland
Spanien
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s13348-024-00456-6
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja