undefined

Product formulas for multiple stochastic integrals associated with Lévy processes

Publiceringsår

2024

Upphovspersoner

Di Tella, Paolo; Geiss, Christel; Steinicke, Alexander

Abstrakt

In the present paper, we obtain an explicit product formula for products of multiple integrals w.r.t. a random measure associated with a Lévy process. As a building block, we use a representation formula for products of martingales from a compensated-covariation stable family. This enables us to consider Lévy processes with both jump and Gaussian part. It is well known that for multiple integrals w.r.t. the Brownian motion such product formulas exist without further integrability conditions on the kernels. However, if a jump part is present, this is, in general, false. Therefore, we provide here sufficient conditions on the kernels which allow us to establish product formulas. As an application, we obtain explicit expressions for the expectation of products of iterated integrals, as well as for the moments and the cumulants for stochastic integrals w.r.t. the random measure. Based on these expressions, we show a central limit theorem for the long time behaviour of a class of stochastic integrals. Finally, we provide methods to calculate the number of summands in the product formula.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Geiss Christel

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Springer

Volym

Early online

Publikationsforum

53717

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object]

Publiceringsland

Spanien

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s13348-024-00456-6

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja