undefined

Probing properties of quark-gluon plasma using machine learning

Publiceringsår

2024

Upphovspersoner

Hirvonen, Henry

Abstrakt

This thesis focuses on a phenomenological modeling of ultrarelativistic heavy-ion collisions. The primary objective is to investigate and constrain the properties of the quark-gluon plasma (QGP) by comparing fluid-dynamical simulation results with various flow observables measured at CERN-LHC and BNL-RHIC. To achieve this, the existing EKRT+fluid dynamics heavy-ion collision framework is further developed, and machine learning techniques are utilized to reduce the computational cost of complex simulations. These types of advancements are crucial for the improving understanding of the QGP properties. The introduction of the thesis provides a general description of the employed heavy-ion collision framework and discusses the novel features introduced in this thesis. The main contributions of this work can be categorized into three development areas: dynamical decoupling, neural networks, and the Monte-Carlo EKRT initial state model. Firstly, incorporating a dynamical decoupling into the fluid-dynamical framework improved the description of peripheral collision systems, resulting in a better agreement with the measured flow coefficients compared to constant temperature decoupling. Secondly, neural networks were trained to predict flow observables directly from the initial state, effectively replacing the computationally expensive hydrodynamic simulations and reducing the required computation time by several orders of magnitude. Finally, a new Monte-Carlo EKRT initial state model was introduced and successfully applied to the studies of rapidity distributions of charged particles and their flow coefficients, as well as midrapidity flow observables. Keywords: relativistic heavy-ion collisions, quark-gluon plasma, relativistic hydrodynamics, machine learning
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Hirvonen Henry

Publikationstyp

Publikationsform

Separat verk

Målgrupp

Vetenskaplig

UKM:s publikationstyp

G5 Artikelavhandling

Publikationskanalens uppgifter

Journal/Serie

JYU Dissertations

Förläggare

University of Jyväskylä

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Fysik

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Finland

Förlagets internationalitet

Inhemsk

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja