Explainability in Educational Data Mining and Learning Analytics : An Umbrella Review
Publiceringsår
2024
Upphovspersoner
Gunasekara, Sachini; Saarela, Mirka
Abstrakt
This paper presents an umbrella review synthesizing the findings of explainability studies within the EDM and LA domains. By systematically reviewing existing reviews and adhering to the PRISMA guidelines, we identified 49 secondary studies, culminating in a final corpus of 10 studies for rigorous systematic review. This approach offers a comprehensive overview of the current state of explainability research in educational models, providing insights into methodologies, techniques, outcomes, and the effectiveness of explainability implementations in educational contexts, including the impact of data types, models, and metrics on explainability. Our analysis unveiled that observed variables, typically more easily understood, can directly enhance model explainability compared to latent variables, which are often harder to interpret. Moreover, while older studies accentuate the benefits of decision tree models for their intrinsic explainability and minimal need for additional explanation techniques, recent research favors more complex models and post-hoc explanation methods. Surprisingly, not a single publication in our corpus discussed metrics for evaluating the effectiveness or quality of explanations. However, a subset of articles in our collection addressed metrics for model performance and fairness in educational settings. Selecting optimal data types, models, and metrics promises to enhance transparency, interpretability, and accessibility for educators and students alike.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
Proceedings of the 17th International Conference on Educational Data Mining
Sidor
887-892
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Pedagogik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.5281/zenodo.12729987
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja