Inverse problems for the minimal surface equation and semilinear elliptic partial differential equations
Publiceringsår
2024
Upphovspersoner
Nurminen, Janne
Abstrakt
This thesis focuses on studying inverse problems for nonlinear elliptic partial differential equations and in particular inverse problems for the minimal surface equation and semilinear elliptic equations. It is shown that one can recover information about the coefficients of the equation or some geometric information from boundary measurements of solutions. The main tool used is linearization, both first order and higher order linearization. The introduction describes inverse problems for partial differential equations in the context of the Calder´on problem and gives a survey of the literature related to the linearization methods. Main theorems of the included articles are presented and the methods to prove them are also discussed. The articles (A) and (C) focus on inverse problems for the minimal surface equation. In both articles we look at the minimal surface equation in Euclidean space that is equipped with a Riemannian metric. Then from boundary measurements we determine information about the metric. In (A) the metric is conformally Euclidean and in (C) the metric will be in a class of admissible metrics. The main method used in both articles is the higher order linearization method. The remaining articles (B) and (D) study inverse problems for semilinear elliptic equations. In (B) the equation has a power type nonlinearity and the aim is to determine an unbounded potential from boundary measurements. Also in (B) the method used is the higher order linearization method. In (D) the focus is on recovering a general zeroth order nonlinearity from boundary measurements. Here the first linearization is used and we improve previous results for this method in the case of semilinear equations.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Nurminen Janne
Publikationstyp
Publikationsform
Separat verk
Målgrupp
Vetenskaplig
UKM:s publikationstyp
G5 Artikelavhandling
Publikationskanalens uppgifter
Journal/Serie
JYU Dissertations
Förläggare
University of Jyväskylä
ISSN
ISBN
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object]
Publiceringsland
Finland
Förlagets internationalitet
Inhemsk
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja