undefined

Nonlinear blind source separation exploiting spatial nonstationarity

Publiceringsår

2024

Upphovspersoner

Sipilä, Mika; Nordhausen, Klaus; Taskinen, Sara

Abstrakt

In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper, we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data, and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations. Finally, we illustrate how the proposed method can be used as a pre-processing method when making multivariate predictions.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Nordhausen Klaus Orcid -palvelun logo

Sipilä Mika Orcid -palvelun logo

Taskinen Sara Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

665

Artikelnummer

120365

Publikationsforum

57847

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Statistik; Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.ins.2024.120365

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja