Pullback of a quasiconformal map between arbitrary metric measure spaces

Pullback of a quasiconformal map between arbitrary metric measure spaces

Publiceringsår

2024

Upphovspersoner

Ikonen, Toni; Lučić, Danka; Pasqualetto, Enrico

Abstrakt

We prove that every (geometrically) quasiconformal homeomorphism between metric measure spaces induces an isomorphism between the cotangent modules constructed by Gigli. We obtain this by first showing that every continuous mapping φ with bounded outer dilatation induces a pullback map φ∗ between the cotangent modules of Gigli, and then proving the functorial nature of the resulting pullback operator. Such pullback is consistent with the differential for metric-valued locally Sobolev maps introduced by Gigli–Pasqualetto–Soultanis. Using the consistency between Gigli’s and Cheeger’s cotangent modules for PI spaces, we prove that quasiconformal homeomorphisms between PI spaces preserve the dimension of Cheeger charts, thereby generalizing earlier work by Heinonen–Koskela–Shanmugalingam–Tyson. Finally, we show that if φ is a given homeomorphism with bounded outer dilatation, then φ−1 has bounded outer dilatation if and only if φ∗ is invertible and φ−1 is Sobolev. In contrast to the setting of Euclidean spaces, Carnot groups, or more generally, Ahlfors regular PI spaces, the Sobolev regularity of φ−1 needs to be assumed separately.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

68

Nummer

1

Sidor

137-165

Publikationsforum

57656

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1215/00192082-11081290

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja

Pullback of a quasiconformal map between arbitrary metric measure spaces - Forskning.fi