Taxonomy-Informed Neural Networks for Smart Manufacturing
Publiceringsår
2024
Upphovspersoner
Terziyan, Vagan; Vitko, Oleksandra
Abstrakt
A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity and quality. The current trend in enhancing data-driven models with knowledge-based models promises to enable effective NNs with less data. So-called physics-informed NNs use additional knowledge from computational science to improve NN training. Quite much of the knowledge is available as logical constraints from domain ontologies, and NNs may benefit from using it. In this paper, we study the concept of Taxonomy-Informed NN (TINN), which combines data-driven training of NNs with ontological knowledge. We study different patterns of NN training with additional knowledge on class-subclass hierarchies and instance-class relationships with potential for federated learning. Our experiments show that additional knowledge, which influences TINNs’ training process through the loss function at backpropagation, improves the quality of trained models. See presentation slides: https://ai.it.jyu.fi/ISM-2023-TINN.pptx
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Journal
Moderpublikationens namn
5th International Conference on Industry 4.0 and Smart Manufacturing (ISM 2023)
Moderpublikationens redaktörer
Longo, Francesco; Shen, Weiming; Padovano, Antonio
Förläggare
Sidor
1388-1399
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Nederländerna
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.procs.2024.01.137
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja