undefined

Taxonomy-Informed Neural Networks for Smart Manufacturing

Publiceringsår

2024

Upphovspersoner

Terziyan, Vagan; Vitko, Oleksandra

Abstrakt

A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity and quality. The current trend in enhancing data-driven models with knowledge-based models promises to enable effective NNs with less data. So-called physics-informed NNs use additional knowledge from computational science to improve NN training. Quite much of the knowledge is available as logical constraints from domain ontologies, and NNs may benefit from using it. In this paper, we study the concept of Taxonomy-Informed NN (TINN), which combines data-driven training of NNs with ontological knowledge. We study different patterns of NN training with additional knowledge on class-subclass hierarchies and instance-class relationships with potential for federated learning. Our experiments show that additional knowledge, which influences TINNs’ training process through the loss function at backpropagation, improves the quality of trained models. See presentation slides: https://ai.it.jyu.fi/ISM-2023-TINN.pptx
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Longo, Francesco; Shen, Weiming; Padovano, Antonio

Förläggare

Elsevier

Sidor

1388-1399

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2024.01.137

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja