undefined

Using Cloning-GAN Architecture to Unlock the Secrets of Smart Manufacturing : Replication of Cognitive Models

Publiceringsår

2024

Upphovspersoner

Terziyan, Vagan; Tiihonen, Timo

Abstrakt

As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor's individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary, uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor. See presentation slides: https://ai.it.jyu.fi/ISM-2023-Cloning_GAN.pptx
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Tiihonen Timo Orcid -palvelun logo

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Longo, Francesco; Shen, Weiming; Padovano, Antonio

Förläggare

Elsevier

Sidor

890-902

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2024.01.089

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja