Yet another proof of the density in energy of Lipschitz functions
Publiceringsår
2024
Upphovspersoner
Lučić, Danka; Pasqualetto, Enrico
Abstrakt
We provide a new, short proof of the density in energy of Lipschitz functions into the metric Sobolev space defined by using plans with barycenter (and thus, a fortiori, into the Newtonian–Sobolev space). Our result covers first-order Sobolev spaces of exponent p ∈ (1,∞), defined over a complete separable metric space endowed with a boundedlyfinite Borel measure. Our proof is based on a completely smooth analysis: first we reduce the problem to the Banach space setting, where we consider smooth functions instead of Lipschitz ones, then we rely on classical tools in convex analysis and on the superposition principle for normal 1-currents. Along the way, we obtain a new proof of the density in energy of smooth cylindrical functions in Sobolev spaces defined over a separable Banach space endowed with a finite Borel measure.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
175
Sidor
421-438
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1007/s00229-024-01562-2
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja