undefined

Multi-Objective Mixed-Integer Quadratic Models : A Study on Mathematical Programming and Evolutionary Computation

Publiceringsår

2025

Upphovspersoner

Shir, Ofer M.; Emmerich, Michael

Abstrakt

Within the current literature on multi-objective optimization, there is a scarcity of comparisons between equation-based white-box solvers to evolutionary black-box solvers. It is commonly held that when dealing with linear and quadratic models, equation-based deterministic solvers are generally the preferred choice. The present study aims at challenging this hypothesis, and we show that particularly in box-constrained mixed-integer (MI) problems it is worth employing evolutionary methods when the goal is to achieve a good approximation of a Pareto frontier. To do so, this paper compares a mathematical programming approach with an evolutionary method for set-oriented Pareto front approximation of bi-objective quadratic MI optimization problems. The focus is on convex quadratic under-constrained models wherein the decision variables are either tightly or loosely bounded by box-constraints. Through an empirical assessment of families of quadratic models across varying Hessian forms, variable ranges, and condition numbers, the study compares the performance of the CPLEX-based Diversity Maximization Approach to a state-of-the-art evolutionary multi-objective optimization meta-heuristic with MI mutation and crossover operators. We identify and explain strengths and weaknesses of both approaches when dealing with loosely bounded box-constraints, and prove a theorem regarding the potential undecidability of such multi-objective problems featuring unbounded integer decision variables. The empirical results systematically confirm that black-box and white-box solvers can be competitive, especially in the case of loose box-constraints.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Emmerich Michael Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

29

Nummer

3

Sidor

661-675

Publikationsforum

57542

Publikationsforumsnivå

3

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1109/tevc.2024.3374519

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja