undefined

Reproducing Predictive Learning Analytics in CS1

Publiceringsår

2024

Upphovspersoner

Zhidkikh, Denis; Heilala, Ville; Van Petegem, Charlotte; Dawyndt, Peter; Järvinen, Miitta; Viitanen, Sami; De Wever, Bram; Mesuere, Bart; Lappalainen, Vesa; Kettunen, Lauri; Hämäläinen, Raija

Abstrakt

Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first student pass–fail prediction approach proposed by Van Petegem and colleagues (2022) in a different CS1 course. Using student submission and self-report data, we investigated the reproducibility of the original approach, the effect of adding self-reports to the model, and the interpretability of the model features. The results showed that the original approach for student dropout prediction could be successfully reproduced in a different course context and that adding self-report data to the prediction model improved accuracy for the first four weeks. We also identified relevant features associated with dropout in the CS1 course, such as timely submission of tasks and iterative problem solving. When analyzing student behaviour, submission data and self-report data were found to complement each other. The results highlight the importance of transparency and generalizability in learning analytics and the need for future research to identify other factors beyond self-reported aptitude measures and student behaviour that can enhance dropout prediction.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Zhidkikh Denis Orcid -palvelun logo

Kettunen Lauri Orcid -palvelun logo

Järvinen Miitta Orcid -palvelun logo

Hämäläinen Raija Orcid -palvelun logo

Viitanen Sami Orcid -palvelun logo

Lappalainen Vesa Orcid -palvelun logo

Heilala Ville Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

11

Nummer

1

Sidor

132-150

Publikationsforum

81983

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Pedagogik

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Australien

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.18608/jla.2024.7979

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja