On the usage of joint diagonalization in multivariate statistics : Speed presentation April 2022
Publiceringsår
2023
Upphovspersoner
Nordhausen, Klaus; Ruiz-Gazen, Anne
Abstrakt
In principal component analysis, one scatter matrix such as the covariance matrix is diagonalized. In case the data follows an elliptical distribution, all scatter matrices are proportional and the choice of the scatter matrix does not matter much. Outside the elliptical model, different scatter matrices estimate different population quantities and the comparison of different scatter matrices is of interest. In this talk, we provide an overview of how joint diagonalization of two or more scatter matrices can be used and how this helps for unsupervized data exploration. We first give details on the unsupervized dimension reduction method called Invariant Coordinate Selection which makes use of simultaneous diagonalization of two scatter matrices in a model free context. We also present Blind Source Separation models where the joint diagonalization of two or more scatter matrices plays an important role for different types of data including time series and spatial random fields.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Inte kollegialt utvärderadUKM:s publikationstyp
B1 Inlägg i en vetenskaplig tidskriftPublikationskanalens uppgifter
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Helt öppen publikationskanal
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Statistik
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Förenade kungariket
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.sctalk.2023.100275
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Nej