undefined

Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks

Publiceringsår

2023

Upphovspersoner

Halonen, Vilho; Pölönen, Ilkka

Abstrakt

Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Pölönen Ilkka Orcid -palvelun logo

Halonen Vilho

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

11

Nummer

4

Sidor

1258-1277

Publikationsforum

82344

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1137/22M1538855

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja