Filling minimality and Lipschitz-volume rigidity of convex bodies among integral current spaces
Publiceringsår
2023
Upphovspersoner
Basso, Giuliano; Creutz, Paul; Soultanis, Elefterios
Abstrakt
In this paper we consider metric fillings of boundaries of convex bodies. We show that convex bodies are the unique minimal fillings of their boundary metrics among all integral current spaces. To this end, we also prove that convex bodies enjoy the Lipschitz-volume rigidity property within the category of integral current spaces, which is well known in the smooth category. As further applications of this result, we prove a variant of Lipschitz-volume rigidity for round spheres and answer a question of Perales concerning the intrinsic flat convergence of minimizing sequences for the Plateau problem.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Soultanis Elefterios
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
2023
Nummer
805
Sidor
213-239
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1515/crelle-2023-0076
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja