On the Role of Taylor’s Formula in Machine Learning
Publiceringsår
2023
Upphovspersoner
Kärkkäinen, Tommi
Abstrakt
The classical Taylor’s formula is an elementary tool in mathematical analysis and function approximation. Its role in the optimization theory, whose data-driven variants have a central role in machine learning training algorithms, is well-known. However, utilization of Taylor’s formula in the derivation of new machine learning methods is not common and the purpose of this article is to introduce such use cases. Both a feedforward neural network and a recently introduced distance-based method are used as data-driven models. We demonstrate and assess the proposed techniques empirically both in unsupervised and supervised learning scenarios.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Samlingsverk
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A3 Del av bok eller annat samlingsverkPublikationskanalens uppgifter
Moderpublikationens namn
Förläggare
Sidor
275-294
ISSN
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap
Nyckelord
[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1007/978-3-031-29082-4_16
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja