undefined

Premature conclusions about the signal‐to‐noise ratio in structural equation modeling research : A commentary on Yuan and Fang (2023)

Publiceringsår

2023

Upphovspersoner

Schuberth, Florian; Schamberger, Tamara; Rönkkö, Mikko; Liu, Yide; Henseler, Jörg

Abstrakt

In a recent article published in this journal, Yuan and Fang (British Journal of Mathematical and Statistical Psychology, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based maximum likelihood (NML), to regression analysis with (weighted) composites estimated by least squares (LS) in terms of their signal-to-noise ratio (SNR). They summarize their findings in the statement that “[c]ontrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the [SNR].” In our commentary, we show that Yuan and Fang have made several incorrect assumptions and claims. Consequently, we recommend that empirical researchers not base their methodological choice regarding CB-SEM and regression analysis with composites on the findings of Yuan and Fang as these findings are premature and require further research.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Rönkkö Mikko Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Inte kollegialt utvärderad

UKM:s publikationstyp

B1 Inlägg i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Journal

British Journal of Mathematical and Statistical Psychology

Förläggare

John Wiley & Sons

Volym

76

Nummer

3

Sidor

682-694

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Statistik

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1111/bmsp.12304

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja