undefined

Defensive Machine Learning Methods and the Cyber Defence Chain

Publiceringsår

2023

Upphovspersoner

Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo

Abstrakt

Cyberattacks are now occurring on a daily basis. As attacks and breaches are so frequent, and the fact that human work hours do not scale infinitely, the cybersecurity industry needs innovative and scalable tools and techniques to automate certain cybersecurity defensive tasks in order to keep up. The variety, the complex nature of the attacks, and the effectiveness of 0-day attacks mean that conventional tools are not adequate for securing complex networks with large numbers of users and endpoints with differing identities, behavior, and needs. Machine learning and artificial intelligence aid the creators of security tools in their tasks by introducing adaptive environment possibilities, customizability, and the ability to learn from past attacks and predict future attack attempts. In this chapter, we address innovations in machine learning, deep learning, and artificial intelligence within the defensive cybersecurity fields. We structure this chapter inline with the OWASP Cyber Defense Matrix in order to cover adequate grounds on this broad topic, and refer occasionally to the more granular MITRE D3FEND taxonomy whenever relevant.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Hämäläinen Timo Orcid -palvelun logo

Costin Andrei Orcid -palvelun logo

Turtiainen Hannu

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Samlingsverk

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A3 Del av bok eller annat samlingsverk

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Sipola, Tuomo; Kokkonen, Tero; Karjalainen, Mika

Förläggare

Springer

Sidor

147-163

Publikationsforum

5952

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/978-3-031-15030-2_7

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja