undefined

On Assessing Vulnerabilities of the 5G Networks to Adversarial Examples

Publiceringsår

2022

Upphovspersoner

Zolotukhin, Mikhail; Miraghaie, Parsa; Zhang, Di; Hämäläinen, Timo

Abstrakt

The use of artificial intelligence and machine learning is recognized as the key enabler for 5G mobile networks which would allow service providers to tackle the network complexity and ensure security, reliability and allocation of the necessary resources to their customers in a dynamic, robust and trustworthy way. Dependability of the future generation networks on accurate and timely performance of its artificial intelligence components means that disturbance in the functionality of these components may have negative impact on the entire network. As a result, there is an increasing concern about the vulnerability of intelligent machine learning driven frameworks to adversarial effects. In this study, we evaluate various adversarial example generation attacks against multiple artificial intelligence and machine learning models which can potentially be deployed in future 5G networks. First, we describe multiple use cases for which attacks on machine learning components are conceivable including the models employed and the data used for their training. After that, attack algorithms, their implementations and adjustments to the target models are summarised. Finally, the attacks implemented for the aforementioned use cases are evaluated based on deterioration of the objective functions optimised by the target models.
Visa mer

Organisationer och upphovspersoner

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

10

Sidor

126285-126303

Publikationsforum

78297

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Ja

DOI

10.1109/access.2022.3225921

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja