On resampling schemes for particle filters with weakly informative observations
Publiceringsår
2022
Upphovspersoner
Chopin, Nicolas; Singh, Sumeetpal S.; Soto, Tomás; Vihola, Matti
Abstrakt
We consider particle filters with weakly informative observations (or ‘potentials’) relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman–Kac path integral models—a scenario that naturally arises when addressing filtering and smoothing problems in continuous time—but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time limit, which is expressed as a suitably defined ‘infinitesimal generator.’ By contrasting these generators, we find that (certain modifications of) systematic and SSP resampling ‘dominate’ stratified and independent ‘killing’ resampling in terms of their limiting overall resampling rate. The reduced intensity of resampling manifests itself in lower variance in our numerical experiment. This efficiency result, through an ordering of the resampling rate, is new to the literature. The second major contribution of this work concerns the analysis of the limiting behaviour of the entire population of particles of the particle filter as the time discretisation becomes finer. We provide the first proof, under general conditions, that the particle approximation of the discretised continuous-time Feynman–Kac path integral models converges to a (uniformly weighted) continuous-time particle system.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
50
Nummer
6
Sidor
3197-3222
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik; Statistik
Nyckelord
[object Object],[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1214/22-aos2222
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja