undefined

Dealing with a small amount of data : developing Finnish sentiment analysis

Publiceringsår

2022

Upphovspersoner

Toivanen, Ida; Lindroos, Jari; Räsänen, Venla; Taipale, Sakari

Abstrakt

Sentiment analysis has been more and more prominently visible among all natural language processing tasks. Sentiment analysis entails information extraction of opinions, emotions, and sentiments. In this paper, we aim to develop and test language models for low-resource language Finnish. We use the term “low-resource” to describe a language lacking in available resources for language modeling, especially annotated data. We investigate four models: the state-of-the-art FinBERT [1], and competitive alternative BERT models Finnish ConvBERT [2], Finnish Electra [3], and Finnish RoBERTa [4]. Having a comparative framework of multiple BERT variations is connected to our use of additional methods that are implemented to counteract the lack of annotated data. Basing our sentiment analysis on partly annotated survey data collected from eldercare workers, we supplement our training data with additional data sources. In addition to the non-annotated section of our survey data, additional data (external in-domain dataset and open-source news corpus) are focused on to determine how training data can be increased with the use of methods like pretraining (masked language modeling) and pseudo-labeling. Pretraining and pseudo-labeling, often defined as semi-supervised learning methods, make it possible to utilize unlabeled data either by initializing the model, or by labeling unlabeled data samples with seemingly real labels prior to actual model implementation. Our results suggest that out of all the single BERT models, FinBERT performs the best for our use case. Moreover, applying ensemble learning and combining multiple models further betters model performance and predictive power, and it outperforms a single FinBERT model. The use of both pseudo-labeling and ensemble learning proved to be valuable assets in the extension of training data for low-resource languages such as Finnish. However, with pseudo labeling, proper regularization methods should be considered to prevent confirmation bias from affecting the model performance.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Toivanen Ida Orcid -palvelun logo

Lindroos Jari Orcid -palvelun logo

Taipale Sakari Orcid -palvelun logo

Räsänen Venla Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Språkvetenskaper

Nyckelord

[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1109/besc57393.2022.9995536

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja