undefined

Blind source separation for non-stationary random fields

Publiceringsår

2022

Upphovspersoner

Muehlmann, Christoph; Bachoc, François; Nordhausen, Klaus

Abstrakt

Regional data analysis is concerned with the analysis and modeling of measurements that are spatially separated by specifically accounting for typical features of such data. Namely, measurements in close proximity tend to be more similar than the ones further separated. This might hold also true for cross-dependencies when multivariate spatial data is considered. Often, scientists are interested in linear transformations of such data which are easy to interpret and might be used as dimension reduction. Recently, for that purpose spatial blind source separation (SBSS) was introduced which assumes that the observed data are formed by a linear mixture of uncorrelated, weakly stationary random fields. However, in practical applications, it is well-known that when the spatial domain increases in size the weak stationarity assumptions can be violated in the sense that the second order dependency is varying over the domain which leads to non-stationary analysis. In our work we extend the SBSS model to adjust for these stationarity violations, present three novel estimators and establish the identifiability and affine equivariance property of the unmixing matrix functionals defining these estimators. In an extensive simulation study, we investigate the performance of our estimators and also show their use in the analysis of a geochemical dataset which is derived from the GEMAS geochemical mapping project.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Nordhausen Klaus Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

47

Artikelnummer

100574

Publikationsforum

81713

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Statistik

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.spasta.2021.100574

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja