Polynomial and horizontally polynomial functions on Lie groups
Publiceringsår
2022
Upphovspersoner
Antonelli, Gioacchino; Le Donne, Enrico
Abstrakt
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we assume that S Lie generates g. We say that a function f:G→R (or more generally a distribution on G) is S-polynomial if for all X∈S there exists k∈N such that the iterated derivative Xkf is zero in the sense of distributions. First, we show that all S-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent k in the previous definition is independent on X∈S, they form a finite-dimensional vector space. Second, if G is connected and nilpotent, we show that S-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of g are equivalent notions.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
201
Nummer
5
Sidor
2063-2100
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s10231-022-01192-z
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja