undefined

Polynomial and horizontally polynomial functions on Lie groups

Publiceringsår

2022

Upphovspersoner

Antonelli, Gioacchino; Le Donne, Enrico

Abstrakt

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we assume that S Lie generates g. We say that a function f:G→R (or more generally a distribution on G) is S-polynomial if for all X∈S there exists k∈N such that the iterated derivative Xkf is zero in the sense of distributions. First, we show that all S-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent k in the previous definition is independent on X∈S, they form a finite-dimensional vector space. Second, if G is connected and nilpotent, we show that S-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of g are equivalent notions.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Le Donne Enrico Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Springer

Volym

201

Nummer

5

Sidor

2063-2100

Publikationsforum

51191

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Tyskland

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s10231-022-01192-z

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja