undefined

Explainable AI for Industry 4.0 : Semantic Representation of Deep Learning Models

Publiceringsår

2022

Upphovspersoner

Terziyan, Vagan; Vitko, Oleksandra

Abstrakt

Artificial Intelligence is an important asset of Industry 4.0. Current discoveries within machine learning and particularly in deep learning enable qualitative change within the industrial processes, applications, systems and products. However, there is an important challenge related to explainability of (and, therefore, trust to) the decisions made by the deep learning models (aka black-boxes) and their poor capacity for being integrated with each other. Explainable artificial intelligence is needed instead but without loss of effectiveness of the deep learning models. In this paper we present the transformation technique between black-box models and explainable (as well as interoperable) classifiers on the basis of semantic rules via automatic recreation of the training datasets and retraining the decision trees (explainable models) in between. Our transformation technique results to explainable rule-based classifiers with good performance and efficient training process due to embedded incremental ignorance discovery and adversarial samples (“corner cases”) generation algorithms. We have also shown the use-case scenario for such explainable and interoperable classifiers, which is collaborative condition monitoring, diagnostics and predictive maintenance of distributed (and isolated) smart industrial assets while preserving data and knowledge privacy of the users. See presentation slides: https://ai.it.jyu.fi/ISM-2021-XAI.pptx
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Longo, Francesco; Affenzeller, Michael; Padovano, Antonio

Förläggare

Elsevier

Volym

200

Sidor

216-226

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2022.01.220

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja