undefined

Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0

Publiceringsår

2022

Upphovspersoner

Branytskyi, Vladyslav; Golovianko, Mariia; Malyk, Diana; Terziyan, Vagan

Abstrakt

Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of computer and human vision for more robust and accurate automated object recognition and image generation. We present VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs the first stage of human‘s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and cybersecurity in Industry 4.0. See presentation slides: https://ai.it.jyu.fi/ISM-2021-V1-GAN.pptx
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Terziyan Vagan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Moderpublikationens redaktörer

Longo, Francesco; Affenzeller, Michael; Padovano, Antonio

Förläggare

Elsevier

Volym

200

Sidor

418-427

Publikationsforum

71301

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Helt öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.procs.2022.01.240

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja