undefined

Cutting rules and positivity in finite temperature many-body theory

Publiceringsår

2022

Upphovspersoner

Hyrkäs, Markku; Karlsson, Daniel; van Leeuwen, Robert

Abstrakt

For a given diagrammatic approximation in many-body perturbation theory it is not guaranteed that positive observables, such as the density or the spectral function, retain their positivity. For zero-temperature systems we developed a method [Phys.Rev.B{\bf 90},115134 (2014)] based on so-called cutting rules for Feynman diagrams that enforces these properties diagrammatically, thus solving the problem of negative spectral densities observed for various vertex approximations. In this work we extend this method to systems at finite temperature by formulating the cutting rules in terms of retarded $N$-point functions, thereby simplifying earlier approaches and simultaneously solving the issue of non-vanishing vacuum diagrams that has plagued finite temperature expansions. Our approach is moreover valid for nonequilibrium systems in initial equilibrium and allows us to show that important commonly used approximations, namely the $GW$, second Born and $T$-matrix approximation, retain positive spectral functions at finite temperature. Finally we derive an analytic continuation relation between the spectral forms of retarded $N$-point functions and their Matsubara counterparts and a set of Feynman rules to evaluate them.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Karlsson Daniel Orcid -palvelun logo

Hyrkäs Markku

Van Leeuwen Robertus Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

IOP Publishing

Volym

55

Nummer

33

Artikelnummer

335301

Publikationsforum

61358

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Fysik

Publiceringsland

Förenade kungariket

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1088/1751-8121/ac802d

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja