undefined

Rigidity and almost rigidity of Sobolev inequalities on compact spaces with lower Ricci curvature bounds

Publiceringsår

2022

Upphovspersoner

Nobili, Francesco; Violo, Ivan Yuri

Abstrakt

We prove that if M is a closed n-dimensional Riemannian manifold, n \ge 3, with \mathrm{Ric}\ge n-1 and for which the optimal constant in the critical Sobolev inequality equals the one of the n-dimensional sphere \mathbb {S}^n, then M is isometric to \mathbb {S}^n. An almost-rigidity result is also established, saying that if equality is almost achieved, then M is close in the measure Gromov–Hausdorff sense to a spherical suspension. These statements are obtained in the \mathrm {RCD}-setting of (possibly non-smooth) metric measure spaces satisfying synthetic lower Ricci curvature bounds. An independent result of our analysis is the characterization of the best constant in the Sobolev inequality on any compact \mathrm {CD} space, extending to the non-smooth setting a classical result by Aubin. Our arguments are based on a new concentration compactness result for mGH-converging sequences of \mathrm {RCD} spaces and on a Pólya–Szegő inequality of Euclidean-type in \mathrm {CD} spaces. As an application of the technical tools developed we prove both an existence result for the Yamabe equation and the continuity of the generalized Yamabe constant under measure Gromov–Hausdorff convergence, in the \mathrm {RCD}-setting.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Nobili Francesco

Violo Ivan Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

61

Nummer

5

Artikelnummer

180

Publikationsforum

52940

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object]

Publiceringsland

Tyskland

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Nej

Sampublikation med ett företag

Nej

DOI

10.1007/s00526-022-02284-7

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja