Singular integrals on regular curves in the Heisenberg group
Publiceringsår
2021
Upphovspersoner
Fässler, Katrin; Orponen, Tuomas
Abstrakt
Let be the first Heisenberg group, and let be a kernel which is either odd or horizontally odd, and satisfies The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel . We prove that convolution with k, as above, yields an -bounded operator on regular curves in . This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all 3-dimensional horizontally odd kernels yield bounded operators on Lipschitz flags in . This is needed for solving sub-elliptic boundary value problems on domains bounded by Lipschitz flags via the method of layer potentials. The details are contained in a separate paper. Finally, our technique yields new results on certain non-negative kernels, introduced by Chousionis and Li.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
153
Sidor
30-113
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Publiceringsland
Frankrike
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1016/j.matpur.2021.07.004
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja