Consistency of Independent Component Analysis for FMRI
Publiceringsår
2021
Upphovspersoner
Zhao, Wei; Li, Huanjie; Hu, Guoqiang; Hao, Yuxing; Zhang, Qing; Wu, Jianlin; Frederick, Blaise B.; Cong, Fengyu
Abstrakt
Background Independent component analysis (ICA) has been widely used for blind source separation in the field of medical imaging. However, despite of previous substantial efforts, the stability of ICA components remains a critical issue which has not been adequately addressed, despite numerous previous efforts. Most critical is the inconsistency of some of the extracted components when ICA is run with different model orders (MOs). New Method In this study, a novel method of determining the consistency of component analysis (CoCA) is proposed to evaluate the consistency of extracted components with different model orders. In the method, “consistent components” (CCs) are defined as those which can be extracted repeatably over a range of model orders. Result The efficacy of the method was evaluated with simulation data and fMRI datasets. With our method, the simulation result showed a clear difference of consistency between ground truths and noise. Comparison with existing methods The information criteria were implemented to provide suggestions for the optimal model order, where some of the ICs were revealed inconsistent in our proposed method. Conclusions This method provided an objective protocol for choosing CCs of an ICA decomposition of a data matrix, independent of model order. This is especially useful with high model orders, where noise or other disturbances could possibly lead to an instability of the components.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Cong Fengyu
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal
Förläggare
Volym
351
Artikelnummer
109013
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Medicinsk teknik; Neurovetenskaper
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Nederländerna
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1016/j.jneumeth.2020.109013
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja