Functional a posteriori error estimates for boundary element methods
Publiceringsår
2021
Upphovspersoner
Kurz, Stefan; Pauly, Dirk; Praetorius, Dirk; Repin, Sergey; Sebastian, Daniel
Abstrakt
Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Repin Sergey
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Förläggare
Volym
147
Nummer
4
Sidor
937-966
ISSN
Publikationsforum
Publikationsforumsnivå
3
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s00211-021-01188-6
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja