undefined

Semigenerated Carnot algebras and applications to sub-Riemannian perimeter

Publiceringsår

2021

Upphovspersoner

Le Donne, Enrico; Moisala, Terhi

Abstrakt

This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In addition, we give some sufficient criteria for semigeneration of Carnot groups of arbitrary step. For doing this, we define a new class of Carnot groups, which we call type (◊)(◊) and which generalizes the previous notion of type (⋆)(⋆) defined by M. Marchi. As an application, we get that in type (◊)(◊) groups and in step 3 groups that do not have any Engel-type algebra as a quotient, one achieves a strong rectifiability result for sets of finite perimeter in the sense of Franchi, Serapioni, and Serra-Cassano.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Le Donne Enrico Orcid -palvelun logo

Moisala Terhi Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Springer

Volym

299

Nummer

3-4

Sidor

2257-2285

Publikationsforum

63062

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Ja

Öppen tillgång till publikationskanalen

Delvis öppen publikationskanal

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object],[object Object]

Publiceringsland

Tyskland

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1007/s00209-021-02744-4

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja