undefined

A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series

Publiceringsår

2020

Upphovspersoner

Yan, Rui; Li, Fan; Zhou, DongDong; Ristaniemi, Tapani; Cong, Fengyu

Abstrakt

Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model performance is evaluated on two public sleep datasets (SHHS and Sleep-EDF) with different available channels. The results have shown that our model achieves an overall accuracy of 85.2% on the SHHS dataset and an accuracy of 85% on the Sleep-EDF dataset. We have also demonstrated that the proposed architecture not only is able to handle various numbers of input channels and several signal modalities from different datasets but also exhibits short runtimes and low computational cost.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Zhou Dongdong Orcid -palvelun logo

Yan Rui

Ristaniemi Tapani Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Konferens

Artikelstyp

Annan artikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A4 Artikel i en konferenspublikation

Publikationskanalens uppgifter

Förläggare

IEEE

Sidor

1090-1094

Publikationsforum

55867

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Neurovetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Förenta staterna (USA)

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.23919/Eusipco47968.2020.9287518

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja