undefined

Automatic sleep scoring : a deep learning architecture for multi-modality time series

Publiceringsår

2021

Upphovspersoner

Yan, Rui; Li, Fan; Zhou, Dong Dong; Ristaniemi, Tapani; Cong, Fengyu

Abstrakt

Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. Method: The model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. Result: Model performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals. Comparison: Compared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost. Conclusions: The model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Zhou Dongdong Orcid -palvelun logo

Cong Fengyu

Yan Rui

Ristaniemi Tapani Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Förläggare

Elsevier

Volym

348

Artikelnummer

108971

Publikationsforum

61155

Publikationsforumsnivå

1

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Ja

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Neurovetenskaper

Nyckelord

[object Object],[object Object],[object Object],[object Object],[object Object]

Publiceringsland

Nederländerna

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.1016/j.jneumeth.2020.108971

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja