Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo
Publiceringsår
2020
Upphovspersoner
Vihola, Matti
Abstrakt
Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a practical introduction to selected set of adaptive MCMC methods and to suggest guidelines for choosing appropriate methods for certain classes of models. We consider simple unimodal targets with random-walk-based methods, multimodal target distributions with parallel tempering, and Bayesian hidden Markov models using particle MCMC. The section is complemented by an easy-to-use open-source implementation of the presented methods in Julia, with examples.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Samlingsverk
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A3 Del av bok eller annat samlingsverkPublikationskanalens uppgifter
Moderpublikationens namn
Moderpublikationens redaktörer
Balakrishnan, N.; Colton, T.; Everitt, B.; Piegorsch, W.; Ruggeri, F.; Teugels, J. L.
Förläggare
Sidor
1-12
ISBN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik; Statistik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Nej
Sampublikation med ett företag
Nej
DOI
10.1002/9781118445112.stat08286
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja