Identifying Task-Based Dynamic Functional Connectivity Using Tensor Decomposition
Publiceringsår
2020
Upphovspersoner
Liu, Wenya; Wang, Xiulin; Ristaniemi, Tapani; Cong, Fengyu
Abstrakt
Functional connectivity (FC) patterns in human brain are dynamic in a task-specific condition, and identifying the dynamic changes is important to reveal the information processing processes and network reconfiguration in cognitive tasks. In this study, we proposed a comprehensive framework based on high-order singular value decomposition (HOSVD) to detect the stable change points of FC using electroencephalogram (EEG). First, phase lag index (PLI) method was applied to calculate FC for each time point, constructing a 3-way tensor, i.e., connectivity × connectivity × time. Then a stepwise HOSVD (SHOSVD) algorithm was proposed to detect the change points of FC, and the stability of change points were analyzed considering the different dissimilarity between different FC patterns. The transmission of seven FC patterns were identified in a task condition. We applied our methods to EEG data, and the results verified by prior knowledge demonstrated that our proposed algorithm can reliably capture the dynamic changes of FC.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Konferens
Artikelstyp
Annan artikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A4 Artikel i en konferenspublikationPublikationskanalens uppgifter
Moderpublikationens namn
ICONIP 2020 : 27th International Conference on Neural Information Processing, Proceedings, Part V
Förläggare
Sidor
361-369
ISSN
ISBN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Neurovetenskaper
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Schweiz
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/978-3-030-63823-8_42
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja