The Nitsche phenomenon for weighted Dirichlet energy
Publiceringsår
2020
Upphovspersoner
Iwaniec, Tadeusz; Onninen, Jani; Radice, Teresa
Abstrakt
The present paper arose from recent studies of energy-minimal deformations of planar domains. We are concerned with the Dirichlet energy. In general the minimal mappings need not be homeomorphisms. In fact, a part of the domain near its boundary may collapse into the boundary of the target domain. In mathematical models of nonlinear elasticity this is interpreted as interpenetration of matter. We call such occurrence the Nitsche phenomenon, after Nitsche’s remarkable conjecture (now a theorem) about existence of harmonic homeomorphisms between annuli. Indeed the round annuli proved to be perfect choices to grasp the nuances of the problem. Several papers are devoted to a study of deformations of annuli. Because of rotational symmetry it seems likely that the Dirichlet energy-minimal deformations are radial maps. That is why we confine ourselves to radial minimal mappings. The novelty lies in the presence of a weight in the Dirichlet integral. We observe the Nitsche phenomenon in this case as well, see our main results Theorem and Theorem . However, the arguments require further considerations and new ingredients. One must overcome the inherent difficulties arising from discontinuity of the weight. The Lagrange–Euler equation is unavailable, because the outer variation violates the principle of none interpenetration of matter. Inner variation, on the other hand, leads to an equation that involves the derivative of the weight. But our weight function is only measurable which is the main challenge of the present paper.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Onninen Jani
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Journal/Serie
Förläggare
Volym
13
Nummer
3
Sidor
301-323
ISSN
Publikationsforum
Publikationsforumsnivå
1
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Nej
Parallellsparad
Nej
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1515/acv-2017-0060
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja