undefined

Toward a quasi-Möbius characterization of invertible homogeneous metric spaces

Publiceringsår

2021

Upphovspersoner

Freeman, David; Le Donne, Enrico

Abstrakt

We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Möbius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Möbius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spaces containing a cut point and provide several metric properties of spaces containing no cut points. These results are motivated by a desire to characterize the snowflakes of boundaries of rank-one symmetric spaces up to bi-Lipschitz equivalence.
Visa mer

Organisationer och upphovspersoner

Jyväskylä universitet

Le Donne Enrico Orcid -palvelun logo

Publikationstyp

Publikationsform

Artikel

Moderpublikationens typ

Tidning

Artikelstyp

En originalartikel

Målgrupp

Vetenskaplig

Kollegialt utvärderad

Kollegialt utvärderad

UKM:s publikationstyp

A1 Originalartikel i en vetenskaplig tidskrift

Publikationskanalens uppgifter

Volym

37

Nummer

2

Sidor

671-722

Publikationsforum

66402

Publikationsforumsnivå

2

Öppen tillgång

Öppen tillgänglighet i förläggarens tjänst

Nej

Parallellsparad

Nej

Övriga uppgifter

Vetenskapsområden

Matematik

Nyckelord

[object Object],[object Object]

Publiceringsland

Schweiz

Förlagets internationalitet

Internationell

Språk

engelska

Internationell sampublikation

Ja

Sampublikation med ett företag

Nej

DOI

10.4171/rmi/1211

Publikationen ingår i undervisnings- och kulturministeriets datainsamling

Ja