Indecomposable sets of finite perimeter in doubling metric measure spaces
Publiceringsår
2020
Upphovspersoner
Bonicatto, Paolo; Pasqualetto, Enrico; Rajala, Tapio
Abstrakt
We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak (1,1)-Poincaré inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.
Visa merOrganisationer och upphovspersoner
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
59
Nummer
2
Artikelnummer
63
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Matematik
Nyckelord
[object Object],[object Object],[object Object],[object Object]
Publiceringsland
Tyskland
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1007/s00526-020-1725-7
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja