Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data with a Phase Sparsity Constraint
Publiceringsår
2020
Upphovspersoner
Kuang, Li-Dan; Lin, Qiu-Hua; Gong, Xiao-Feng; Cong, Fengyu; Wang, Yu-Ping; Calhoun, Vince D.
Abstrakt
Canonical polyadic decomposition (CPD) of multi-subject complex-valued fMRI data can be used to provide spatially and temporally shared components among groups with both magnitude and phase information. However, the CPD model is not well formulated due to the large subject variability in the spatial and temporal modalities, as well as the high noise level in complex-valued fMRI data. Considering that the shift-invariant CPD can model temporal variability across subjects, we propose to further impose a phase sparsity constraint on the shared spatial maps to denoise the complex-valued components and to model the inter-subject spatial variability as well. More precisely, subject-specific time delays are first estimated for the complex-valued shared time courses in the framework of real-valued shift-invariant CPD. Source phase sparsity is then imposed on the complex-valued shared spatial maps. A smoothed $\ell _{\mathbf {{0}}}$ norm is specifically used to reduce voxels with large phase values after phase de-ambiguity based on the small phase characteristic of BOLD-related voxels. The results from both the simulated and experimental fMRI data demonstrate improvements of the proposed method over three complex-valued algorithms, namely, tensor-based spatial ICA, shift-invariant CPD and CPD without spatiotemporal constraints. When comparing with a real-valued algorithm combining shift-invariant CPD and ICA, the proposed method detects 178.7% more contiguous task-related activations.
Visa merOrganisationer och upphovspersoner
Jyväskylä universitet
Cong Fengyu
Publikationstyp
Publikationsform
Artikel
Moderpublikationens typ
Tidning
Artikelstyp
En originalartikel
Målgrupp
VetenskapligKollegialt utvärderad
Kollegialt utvärderadUKM:s publikationstyp
A1 Originalartikel i en vetenskaplig tidskriftPublikationskanalens uppgifter
Förläggare
Volym
39
Nummer
4
Sidor
844-853
ISSN
Publikationsforum
Publikationsforumsnivå
2
Öppen tillgång
Öppen tillgänglighet i förläggarens tjänst
Ja
Öppen tillgång till publikationskanalen
Delvis öppen publikationskanal
Parallellsparad
Ja
Övriga uppgifter
Vetenskapsområden
Data- och informationsvetenskap; Neurovetenskaper
Nyckelord
[object Object],[object Object],[object Object]
Publiceringsland
Förenta staterna (USA)
Förlagets internationalitet
Internationell
Språk
engelska
Internationell sampublikation
Ja
Sampublikation med ett företag
Nej
DOI
10.1109/TMI.2019.2936046
Publikationen ingår i undervisnings- och kulturministeriets datainsamling
Ja